Scattering factors from International Tables for X-ray Crystallography (1974). Final atomic coordinates for the non-H atoms and the main geometrical parameters are given in Tables 1 and 2,* according to the numbering scheme given in Fig. 1 (PLUTO, Motherwell & Clegg, 1978).

Related literature. The synthesis of the title compound is described in Iturrino, Juanes, Mendoza, Rodriguez-Ubis & Serrano (1989). Similar ring conformations around the SO_2 group have been found in four phenylsulfonyl derivatives by searching the Cambridge Structural Database (Allen *et al.*, 1979). In contrast, no 14-membered rings containing N atoms at similar positions could be found.

We thank the Direccion General de Investigacion Cientifica y Tecnica (PB0291) for financial support and Professor J. Mendoza for suggesting the problem and providing the material.

References

- ALLEN, F. H., BELLARD, S., BRICE, M. D., CARTWRIGHT, B. A., DOUBLEDAY, A., HIGGS, H., HUMMELINK, T., HUMMELINK-PETERS, B. G., KENNARD, O., MOTHERWELL, W. D. S., ROGERS, J. R. & WATSON, D. G. (1979). Acta Cryst. B35, 2331–2339.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- ITURRINO, L., JUANES, O., MENDOZA, J., RODRIGUEZ-UBIS, J. C. & SERRANO, D. (1989). In preparation.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting crystal and molecular structures. Univ. of Cambridge, England.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- URBANCZYK-LIPKOWSKA, Z., KRAJEWSKI, J. W., GLUZINSKI, P., ANDREETTI, G. D. & BOCELLI, G. (1981). Acta Cryst. B37, 470-473.

Acta Cryst. (1989). C45, 1102–1104

Redetermination of the Absolute Configuration of Deoxyprepacifenol, from the Mediterranean Red Alga Laurencia majuscula

By FRANK R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

AND SALVATORE CACCAMESE

Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

(Received 22 December 1988; accepted 2 February 1989)

Abstract. 3,4'-Dibromo-4-chloro-1',3',3',4-tetramethylspiro(cyclohexane-1,2'-[7]oxabicyclo[4.1.0]hept-4'-ene), $C_{15}H_{21}Br_2ClO$, $M_r = 412.6$, orthorhombic, $P2_12_12_1$, a = 11.6520 (14), b = 12.079 (2), c = 11.606 (3) Å, V = 1633.5 (9) Å³, Z = 4, $D_x =$ 1.678 g cm^{-3} , $\lambda(MoK\alpha)=0.71073$ Å, $\mu=50.7 \text{ cm}^{-1}$, F(000) = 824, T = 297 K, R = 0.053 for 2288 observations (of 3909 unique data). The original absolute configuration determination has been questioned as based on a small difference in wR between enantiomorphous models, 0.085 vs 0.088. Our study, on material from a new natural source, confirms the molecular structure and the absolute configuration with

correlation to chiroptical data and increases the resolution of the determination.

Experimental. Colorless, tabular crystals of (1) isolated from *Laurencia majuscula*, m.p. 402 K. Crystal size $0.28 \times 0.40 \times 0.52$ mm, space group from systematic

0108-2701/89/071102-03\$03.00

© 1989 International Union of Crystallography

^{*}Lists of structure factors, anisotropic thermal parameters, bond distances, bond angles and torsion angles, H-atom parameters and references for the four phenylsulfonyl derivatives mentioned in *Related literature* have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51759 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

WALKER, N. & STUART, D. (1983). Acta Cryst. A 39, 158-166.

 Table 1. Fractional coordinates and equivalent isotropic thermal parameters

Table 2. Bond distances (Å), bond angles (°) and selected torsion angles (°)

	$B_{eq} = \frac{4}{3}(a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33}).$				
	x	у	z	$B_{eq}(Å^2)$	
Br(18)	0.26905 (8)	0.54336 (7)	0.10972 (9)	6.28 (2)	
Br(19)	0.2469 (1)	-0.12917 (7)	0.19057 (9)	7.43 (2)	
Cl(16)	0.0517 (2)	-0.0541 (2)	0.3975 (2)	5.80 (5)	
O(17)	0.3080(5)	0.2861(4)	0.4448 (4)	5.2(1)	
C(1)	0.2813 (6)	0.2199 (6)	0.2385 (6)	3.6 (2)	
C(2)	0.2880 (6)	0.1020 (6)	0.1920 (6)	4.0 (2)	
C(3)	0.2293 (7)	0.0160 (5)	0.2652 (6)	4.1 (2)	
C(4)	0.1037 (6)	0.0446 (6)	0.2902 (6)	4.2 (2)	
C(5)	0.1020 (6)	0.1569 (7)	0.3468 (6)	4.6 (2)	
C(6)	0.1578 (6)	0.2442 (6)	0.2709 (6)	3.9(2)	
C(7)	0-3607 (7)	0.2364 (6)	0.3459 (6)	3.9(2)	
C(8)	0.3893 (7)	0.3494 (6)	0-3786 (7)	5.0 (2)	
C(9)	0.3465 (7)	0.4396 (6)	0.3072 (7)	4.7 (2)	
C(10)	0.3165 (6)	0-4215 (6)	0.2003 (7)	4.3 (2)	
C(11)	0.3247 (6)	0.3071 (6)	0.1456 (6)	3.6 (2)	
C(12)	0-4531 (7)	0.2894 (7)	0.1141 (7)	5.3 (2)	
C(13)	0.2584 (8)	0.3002 (7)	0.0329 (6)	5.4 (2)	
C(14)	0.4466 (7)	0.1476 (7)	0.3808 (8)	5.8 (2)	
C(15)	0.0228 (7)	0.0348 (8)	0.1884 (7)	5.9 (2)	

absences h00 with h odd, 0k0 with k odd, 00l with lodd, cell dimensions from setting angles of 25 reflections having $11 < \theta < 12^{\circ}$. Data collected on Enraf-Nonius CAD-4 diffractometer, Mo $K\alpha$ radiation, graphite monochromator, $\omega - 2\theta$ scans designed for $I = 50\sigma(I)$, subject to max. scan time 120 s, scan rates varied $0.46-4.0^{\circ}$ min⁻¹. Data having $1 < \theta < 30^{\circ}$, $0 \le h \le 16$, $0 \le k \le 16$, $0 \le l \le 16$ measured, also inequivalent hkl octant to $\theta = 25^{\circ}$. Data corrected for background, Lorentz, polarization, absorption by ψ scans, min. relative transmission 74.60, max. 99.77%. Standard reflections 400, 020, 002, decreased 9.7% in intensity, linear correction applied. 3909 unique hkl and *hkl* data, 2288 observed with $I > 1\sigma(I)$. Structure solved by heavy-atom methods, refined by full-matrix least squares based on F with weights $w = 4F_a^2 \times$ $Lp[S^{2}(C+R^{2}B) + (0.02F_{o}^{2})^{2}]^{-1}$, where S = scan rate, C = integrated count, R = scan time/background time, B = background count, using Enraf-Nonius SDP (Frenz & Okaya, 1980), scattering factors of Cromer & Waber (1974), anomalous coefficients of Cromer (1974). Non-H anisotropic, H atoms located from ΔF and included as fixed contributions with $B = 5.0 \text{ Å}^2$. Final* R = 0.053, wR = 0.053, S = 2.653 for 173 variables. Max. $\Delta/\sigma = 0.01$ in final cycle, max. residual density $0.84 \text{ e} \text{ Å}^{-3}$ [near Br(1)], min. $-0.63 \text{ e} \text{ Å}^{-3}$, extinction $g = 1.5 (3) \times 10^{-7}$ where the correction factor $(1 + gI_c)^{-1}$ was applied to F_c . Enantiomorph yielded R = 0.069, wR = 0.079, S = 3.943, and had 42 reflections with $10 < \Delta F / \sigma(F) < 27$, while the correct configuration had no such data. The improve-

Br(18)-C(10)Br(19)-C(3)Cl(16)-C(4)O(17)-C(7)O(17)-C(8)C(1)-C(2)C(1)-C(2)C(1)-C(6)C(1)-C(7)C(1)-C(11)	1.891 (5) 1.966 (4) 1.827 (5) 1.434 (6) 1.440 (6) 1.526 (7) 1.517 (6) 1.565 (6) 1.569 (7)	$\begin{array}{cccc} C(4)-C(5) & 1 \\ C(4)-C(15) & 1 \\ C(5)-C(6) & 1 \\ C(7)-C(8) & 1 \\ C(7)-C(14) & 1 \\ C(8)-C(9) & 1 \\ C(9)-C(10) & 1 \\ C(10)-C(11) & 1 \\ C(11)-C(12) & 1 \\ \end{array}$	508 (8) 517 (7) 520 (7) 455 (7) 522 (7) 457 (7) 307 (8) 524 (7) 555 (7)
C(2)-C(3) C(3)-C(4)	1·506 (7) 1·532 (7)	C(11)–C(13) 1	522 (7)
C(7)-O(17)-C($\begin{array}{ccc} 8) & 60.9 (3) \\ 0 & 108.4 (4) \\ 0 & 111.7 (4) \\ 1) & 111.2 (4) \\ 0 & 0 \\ 0 & $	O(17)-C(7)-C(1)	115.9 (4)
C(2)-C(1)-C(6)		O(17)-C(7)-C(8)	59.8 (3)
C(2)-C(1)-C(7)		O(17)-C(7)-C(14)	111.3 (4)
C(2)-C(1)-C(1)		C(1)-C(7)-C(8)	117.5 (4)
C(6)-C(1)-C(7	$\begin{array}{ccc} 109 \cdot 8 & (4) \\ 1) & 110 \cdot 0 & (4) \\ 1) & 105 \cdot 6 & (4) \end{array}$	C(1)-C(7)-C(14)	120-7 (5)
C(6)-C(1)-C(1		C(8)-C(7)-C(14)	116-2 (5)
C(7)-C(1)-C(1		O(17)-C(8)-C(7)	59-4 (3)
C(1)-C(2)-C(3)) 114.9 (4)	O(17)C(8)C(9)	118·4 (5)
Br(19)-C(3)-C	(2) 108.6 (6)	C(7)C(8)C(9)	118·3 (5)
Br(19)-C(3)-C	(4) 112.6 (4)	C(8)C(9)C(10)	120·5 (5)
C(2)-C(3)-C(4	$\begin{array}{ccc} 112.6 (4) \\ (3) & 107.4 (4) \\ (5) & 106.6 (4) \end{array}$	Br(18)-C(10)-C(9)	118-4 (5)
Cl(16)-C(4)-C		Br(18)-C(10)-C(11)) 119-5 (4)
Cl(16)-C(4)-C		C(9)-C(10)-C(11)	122-0 (5)
Cl(16)-C(4)-C(4)-C(5)	$\begin{array}{cccc} (15) & 105 \cdot 9 & (4) \\) & 107 \cdot 4 & (4) \\ 5) & 115 \cdot 4 & (5) \end{array}$	C(1)-C(11)-C(10)	107·4 (4)
C(3)-C(4)-C(5)		C(1)-C(11)-C(12)	112·0 (4)
C(3)-C(4)-C(1)		C(1)-C(11)-C(13)	112·7 (4)
C(5)-C(4)-C(1)	$\begin{array}{c} 5) & 113.7 (5) \\ 111.5 (4) \\ 114.6 (5) \end{array}$	C(10)-C(11)-C(12)	106.5(4)
C(4)-C(5)-C(6)		C(10)-C(11)-C(13)	112.1(4)
C(1)-C(6)-C(5)		C(12)-C(11)-C(13)	106.1(4)
C(6)-C(1)-C(2)-C(2)-C(2)-C(1)-C(6)-C(2)-C(1)-C(6)-C(2)-C(1)-C(7)-C(1)-C(7)-C(1)-C(7)-C(1)-C(7)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1	$\begin{array}{cccc} C(3) & -48 \cdot 5 (8) \\ C(5) & 50 \cdot 2 (8) \\ C(14) & 9 \cdot 7 (9) \\ -C(8) & 41 \cdot 4 (8) \\ -C(12) & -62 \cdot 7 (7) \end{array}$	$\begin{array}{c} \text{Br}(19)-\text{C}(3)-\text{C}(4)-\text{Cl}(3)\\ \text{C}(2)-\text{C}(3)-\text{C}(4)-\text{C}(5)\\ \text{C}(3)-\text{C}(4)-\text{C}(5)-\text{C}(6)\\ \text{C}(4)-\text{C}(5)-\text{C}(6)-\text{C}(1)\\ \text{C}(1)-\text{C}(7)-\text{C}(8)-\text{C}(9)\\ \end{array}$	16) 65.8 (5) -56.7 (7) 57.9 (7) -2.5 (10)
$\begin{array}{c} C(2)-C(1)-C(11)\\ C(7)-C(1)-C(11)\\ C(1)-C(2)-C(3)-\\ C(1)-C(3)-\\ C(1)-C(3)-\\ C(1)-C(3)-\\ C(1)-C(3)-\\ C(1)-C(3)-\\ C(1)-C(3)-\\ C(3)-\\ C($	$\begin{array}{ccc} -C(13) & 56.9 & (8) \\ -C(10) & -57.8 & (7) \\ Br(19) & 179.7 & (5) \\ C(4) & 54.2 & (8) \end{array}$	C(7)-C(8)-C(9)-C(10) C(8)-C(9)-C(10)-Br(C(8)-C(9)-C(10)-C(1)	$\begin{array}{c} -21.6 (11) \\ 18) & -176.8 (6) \\ 1) & -0.1 (13) \\ \end{array}$

Fig. 1. Structure of (1) with thermal ellipsoids drawn at the 30% probability level.

ment in wR is significant at better than $\alpha = 0.005$ (Hamilton, 1965). The reported configuration has $[\alpha]^{20^{\circ}C}$ (λ ,nm) + 50.4° (589), +53.0° (578), +61.1° (546), +112.7° (436), (c = 1.3 g l⁻¹ in CHCl₃).

The atomic parameters are given in Table 1, bond distances, bond angles and torsion angles in Table 2. Fig. 1 shows the structure of the molecule.

^{*} Lists of H-atom coordinates, anisotropic thermal parameters and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51762 (37 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

DEOXYPREPACIFENOL

Related literature. Isolation from Laurencia majuscula: Caccamese & Compagnini (1989). Original determination, as ioslated from the sea hare, Aplysia Californica, which feeds on Laurencia species: Ireland, Stallard, Faulkner, Finer & Clardy (1976). Isolation from Laurencia okamurai: Oijka, Shizuri & Yamada (1982). Chemical constituents of Laurencia species: Erickson (1983), Faulkner (1984), Caccamese, Toscano, Cerrini & Gavuzzo (1982). Crystal structure of pacifenol, from Laurencia majuscula: Fronczek & Caccamese (1986). Crystal structure of dehydrochloroprepacifenol. from Laurencia majuscula: Caccamese, Compagnini, Toscano, Nicolo & Chapuis (1987). Criticism of original absolute configuration determination: Selover & Crews (1980).

References

CACCAMESE, S. & COMPAGNINI, A. (1989). J. Nat. Prod. Submitted.

- CACCAMESE, S., COMPAGNINI, A., TOSCANO, R. M., NICOLO, F. & CHAPUIS, G. (1987). Tetrahedron, 43, 5393-5399.
- CACCAMESE, S., TOSCANO, R. M., CERRINI, S. & GAVUZZO, E. (1982). Tetrahedron Lett. pp. 3415-3418.
- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- ERICKSON, K. L. (1983). Marine Natural Products, Vol. 5, edited by P. J. SCHEUER, pp. 131–257. New York: Academic Press.
- FAULKNER, D. J. (1984). Nat. Prod. Rep. 1, 251-280.
- FRENZ, B. A. & OKAYA, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- FRONCZEK, F. R. & CACCAMESE, S. (1986). Acta Cryst. C42, 1649–1651.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- IRELAND, C., STALLARD, M. O., FAULKNER, D. J., FINER, J. & CLARDY, J. (1976). J. Org. Chem. 41, 2461–2465.
- OLIKA, M., SHIZURI, Y. & YAMADA, K. (1982). Phytochemistry, 21, 2410-2411.
- SELOVER, S. J. & CREWS, P. (1980). J. Org. Chem. 45, 69-72.

Acta Cryst. (1989). C45, 1104-1105

Structure of 6-Benzyloxy-2,3-dichloro-4-(2-fluorobenzoyl)phenol

By Hiroshi Nakai

Shionogi Research Laboratories, Shionogi & Co. Ltd, Fukushima-ku, Osaka 553, Japan

(Received 15 December 1988; accepted 4 January 1989)

Abstract. $C_{20}H_{13}Cl_2FO_3$, $M_r = 391.22$, monoclinic, $P2_1/c$, a = 4.932 (1), b = 20.683 (2), c = 16.831 (2) Å, $\beta = 90.14$ (1)°, V = 1717.0 (4) Å³, Z = 4, $D_x = 1.513$ Mg m⁻³, λ (Cu Ka) = 1.54178 Å, $\mu = 3.66$ mm⁻¹, F(000) = 800, T = 295 K, R = 0.043 for 2619 observed reflections $[F_o > 3\sigma(F_o)]$. The molecules are linked by an intermolecular hydrogen bond between O(24)H and O(8) to form an infinite chain extending along the c axis, O(24)H...O(8)(x, $\frac{3}{2}+y, \frac{1}{2}+z)$ 1.96 (3) Å and O...O 2.792 (3) Å.

Experimental. Prismatic colorless crystals obtained from benzene. Crystal of dimensions $0.2 \times 0.2 \times$ 0.2 mm. Rigaku AFC-5 diffractometer, graphite-monochromatized Cu Ka. Cell dimensions determined from 2θ angles for 25 reflections in the range $30 < 2\theta < 50^{\circ}$. Intensities measured up to $2\theta = 140^{\circ}$ in h - 5/0, k 0/25and l-20/20, $\omega-2\theta$ scans, ω -scan width (1.0 + $0.2\tan\theta$, three standard reflections monitored every 100 measurements showed no significant change. 3193 unique reflections measured, 2619 intensities observed $[F_o \leq 3\sigma(F_o)]$ and six very strong reflections rejected], no absorption corrections. Structure solved by

MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978). H atoms located on a difference density map. Positional and thermal parameters refined by block-diagonal least squares, isotropic for H and anisotropic for the others. $\sum (w | \Delta F |^2)$ minimized, $w = 1/[\sigma^2(F_o) + 0.0008 | F_o|^2]$, w = 0 for 64 reflections with $w^{1/2} |\Delta F| \ge 3$. Final R = 0.043, wR = 0.049, S = 1.1116. Highest peak in final difference map $0.3e^{-3}$. Max. Δ/σ in the final cycle 0.03. Atomic scattering factors calculated by $\sum [a_i \exp(-b_i \lambda^{-2} \sin^2 \theta)]$ + c (i=1,...,4) (International Tables for X-ray Crystallography, 1974). Calculations performed on a FACOM M340R computer at Shionogi Research Laboratories. The final atomic coordinates and equivalent isotropic temperature factors are given in Table 1. Bond distances and angles are listed in Table 2.* A perspective view of the molecule with the

0108-2701/89/071104-02\$03.00

© 1989 International Union of Crystallography

1104

^{*} Lists of structure factors, anisotropic temperature factors of the non-H atoms and atomic coordinates of the H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51727 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.